

Stückliste / legend

für GE Jenbacher Teile Nr.: 584466 for GE Jenbacher part no.:

Dungs Art. Nr.: 254493 Dungs part no.:

Pos	Dungs Art. Nr.	GE Teile Nr.	Bezeichnung	Туре	Zusatz	Zulassung
pos	Dungs order no.	GE order no.	designation	type	version	approval
A1	227143		Vorschweißflansch pre-weld flange		DN 150/PN 16, nach DIN 2633, Reihe 1 DN 150/PN 16, at DIN 2633, line 1	
A2	227141		Vorschweißflansch pre-weld flange		DN 100/PN 16, nach DIN 2633, Reihe 1 DN 100/PN 16, at DIN 2633, line 1	
Z1	247165		Rohrzwischenstück Pipe connection	S-125-150-1-RED-256	Reduzierung DN 125/150 PN 16 mit Abgang ½" reduction DN 125/150 PN 16 with connection ½"	
Z2	227724		Rohrzwischenstück Pipe connection	S-125-150-0-RED-256	Reduzierung DN 125/150 PN 16 reduction DN 125/150 PN 16	
Z3	247163		Rohrzwischenstück Pipe connection	S-100-150-1-RED-253	Reduzierung DN 100/150 PN 16 mit Abgang ½" reduction DN 100/150 PN 16 with connection ½"	
ka	251876	526735	Absperrklappe Butterfly valve	Z 014-A-LW	DN 150/PN 16, mit Gewindebohrung DN 150/PN 16, with threaded holes	NG-4313 BS 0106
fg	227158	264344	Zellengasfilter cellular - gas filter	VZF 150	DN 150 PN 16, P max. 13 bar	CE-0085 BM 0288
	229359	267789	Filtereinsatz filter element		für Zellengasfilter VZF 125/150 for cellular – gasfilter VZF 125/150	
	229354	267793	O-Ring o-ring		für Zellengasfilter VZF 125/VZF 150 for cellular - gasfilter VZF 125/150	
md1	103705	262336	Manometer manometer		R 1/2", 0 - 600 mbar, Dm 80 mm	
	033621	102333	Druckknopfhahn pushbutton		R ½"	CE-0085 AR 0157
rd	013268	291152	Druckregelgerät Pressure regulator	FRS 5150	DN 150/PN 16, mit Regelfeder DN 150/PN 16, with spring	CE-0085 AQ 7126
	229914	313219	Regelfeder gelb Spring yellow		DN 150, Einstellbereich 30 – 70 mbar DN 150, setting range 30 – 70 mbar	

Stückliste / legend

für GE Jenbacher Teile Nr.: 584466 for GE Jenbacher part no.:

Dungs Art. Nr.: 254493 Dungs part no.:

Pos	Dungs Art. Nr.	GE Teile Nr.	Bezeichnung	Туре	Zusatz	Zulassung		
pos	Dungs order no.	GE order no.	designation	type	version	approval		
md2	082081	199622	Manometer manometer		R 1/2", 0 - 100 mbar, Dm 80 mm			
	033621	102333	Druckknopfhahn pushbutton		R ½"	CE-0085 AR 0157		
vm	250365	576974	Doppelmagnetventil Double solenoid valve	DMV 5125/11 ECO	DN 125/PN 16, 24 - 28 VDC, IP 54, 100% ED	CE-0085 AN 2801		
	248505	561798	Ersatzmagnet Nr. 1711/2P replacement solenoid no. 1711/2P		24 – 28 VDC, IP 54, 100% ED, mit DIN- Steckanschluß 24 – 28 VDC, IP 54, 100% ED, with DIN-plug connection			
	210319	332118	Leitungsdose schwarz plugs black		nach DIN 43650 per DIN 43650			
gd-	215234	245962	Druckwächter pressure switch	GW 150 A2	Einstellbereich 5 – 150 mbar setting range 5 – 150 mbar	CE-0085 AO 3220		
	210318	320005	Leitungsdose grau plugs grey		nach DIN 43650 per DIN 43650			
pv	224983	262279	Ventilprüfsystem valve proving system	VPS 504 Serie 05	24 VDC, IP54;	CE-0085 AP 0168		
rn	241764	234693	Nulldruckregler Zero pressure regulator	FRNG 5150	DN 150/PN 16 DN 150/PN 16	CE-0085 AQ 7126		

1. Introduction: 2							
2. Description of the system: 2							
2.1	Mechanical assembly of the device:	2					
2.2	Gas pressure/gas quality limiting conditions:	4					
2.3	Electrical connection:	4					
2.3.1	Device connector:	4					
2.3.2	Relevant connecting cable:	4					
2.3.3	Power supply:	5					
2.3.4	CAN – coupling:	5					
2.3.5	Coding / release of the device:	5					
3. Coi	nmissioning:	5					
3.1	Parameter setting:	5					
3.1.1	Indicative values for the GAS PROPORTIONING VALVE/TECJET RECIPE:	5					
3.1.2	LEANOX recipe:	8					
3.1.3	ENGINE DATA recipe:	8					
3.2	Dia.ne visualisation screens:	8					
3.2.1	LEANOX:	8					
3.2.2	DETAILS - GAS:	8					
3.2.3	SYSTEM:	8					
4. Tro	ubleshooting:	9					
4.1	Failure messages:	9					
4.1.1	Tripping:	9					
4.1.2	Warning:	10					
4.2	Troubleshooting:	10					
4.2.1	Power supply problems (voltage supply, CAN bus):	10					
4.3	Mechanical problems (gas quality and pressure):	11					
4.4	Electronic problems (internal errors):	11					

1. Introduction:

Using the TecJet gas proportioning valve it is possible to specify a desired gas volume. This makes it possible to dispense with the gas mixer used until now, and allows you to actively intervene to make mixtures more lean or rich and to directly preset the fuel mixture lambda value. The fuel mixture lambda value is the ratio between the actual combustion air volume and the stoichiometrically required air volume. That is why stoichiometric combustion equals lambda = 1, resulting in improved behaviour while starting and during isolated operation. A zero controller pressure is no longer required. This type of gas proportioning valve can be used in combination with both natural gas and special gasses.

2. Description of the system:

The actuator drive with integrated electronics is located on the side of the valve housing. The connector plug is located on the face of the housing. At the other side, a mechanical pointer is located indicating the actual valve position. The direction of flow is indicated using an arrow on the cast iron housing. On top of the valve is a metal housing containing the device sensors (sensor box).

2.1 Mechanical assembly of the device:

The TecJet should be assembled so as to protect it from engine vibrations. Use a flexible hose (approx. 0.5 m) making sure that in view of control requirements (dead volume) the maximum admissible distance from the engine connection point does not exceed 1.3 m.

As a guideline, a distance of up to 2 m (at least 6x the nominal diameter) between TecJet and the solenoid valves must be maintained to provide a damping system. This should already be taken into account by the manufacturer in the design of the gas pressure control system. The manufacturer advises to maintain an intake-sided damping distance of 6x the nominal device diameter and an output-sided damping distance of 2x the nominal device diameter and to assemble the device according to ANSI/ISA-S75.02 to prevent sensitivity losses. By observing the above distances, these requirements are fulfilled. The device is mounted horizontally with the sensor box on top. The direction of flow is indicated by means of an arrow on the cast-iron housing.

See the following illustration for the position of the individual gas pressure control system components.

1 Ball valve

- 2 Micro filter
- 3 Pre-pressure controller

4 Solenoid valves with leak testing

- 5 TecJet gas proportioning valve
- 6 Flexible hose
- 7 Engine connection point

Whenever several fuel gasses need to be mixed, this arrangement is implemented for each individual fuel gas. Once they have passed the gas proportioning valves the gasses are combined and fed to the gas mixer housing or a shared piece of tubing leading to the turbocompressor/compressor intake.

2.2 Gas pressure/gas quality limiting conditions:

Jenbacher

Documentation

The differential pressure across the device must be in the 10 - 500 mbar range. The intake-sided pressure must be in the 0.4barabs and 1.6 barabs range. The required gas prepressure at the customer interface follows from the required gas volume, the calorific value, the engine efficiency and pressure losses along the gas pressure control system. When determining the required gas prepressure at the customer interface, the relevant guidelines need to be taken into account (the Jenbacher Anlagenkonstruktion and Projektierung departments can help you).

The zero pressure controller is no longer required. The prepressure controller is a standard feature as in practice there is no guarantee that TI 1000-0300/-0301 or -0302 will actually be complied with.

Make sure that a relative gas-moisture content percentage of 80 % is not exceeded (in accordance with TI 1000-0300/-0301 or -0302) and that measures are taken to prevent condensate from forming (in accordance with TI 1400-0091).

2.3 Electrical connection:

2.3.1 Device connector:

The TecJet is integrated into the dia.ne system using a connector. The connector contains both the power supply and the CAN bus. The pin sequence is indicated in the table below.

Meaning	Pin
Power supply +	W
Power supply -	Z
CAN – ID1	Н
CAN – ID2	G
CAN – High In	R
CAN – Low In	S
CAN – High Out	Т
CAN – Low Out	U
CAN – Gnd	V
CAN - Shield	X

The device earthing (according to CE) is provided by fitting a braided cable which is as short as possible (< 1 m) and has a minimum cable diameter of 2.5 mm^2 between the relevant connection screw and the engine mas.

2.3.2 Relevant connecting cable:

A power supply cable with the following colour/number codes and pin sequence is used to establish the electrical connection.

Identification	Colour (number)	Pin
Power supply +	1	W
Power supply -	2	Z
CAN – ID1	4	Н
CAN – ID2	3	G
CAN – High IN	Blue	R
CAN – Low IN	White / blue	S
CAN – High OUT	White / orange	Т
CAN – Low OUT	Orange	U

2.3.3 Power supply:

The supply voltage must be in the 18 - 32 V V_{DC} (24 V_{DC} nominal) range and is pole-error protected. The device is also over-voltage protected up to 80 V_{DC} . During operation 65 Watt (250 Watt peak) for TecJet50PLUS and 100 Watt (315 Watt peak) for TecJet110 are required.

2.3.4 CAN – coupling:

The CAN bus is contained in the connecting cable. The bus lines are linked to the device, also providing for return lines. Using the pins for CAN ID1 and CAN ID2 the node number can be set, resulting in the CAN bus identification.

Device	CAN ID1	CAN ID2	Device	CAN node	
1	Open	Open	1	6	
2	Minus	Open	2	7	
3	Open	Minus	3	8	
4	Minus	Minus	4	9	

In the case of mixed gas applications, devices 1 and 3 are selected for the lower calorific value fuel gas, and device 2 for the higher calorific value fuel gas with a more constant fuel gas quality. See also the relevant TI.

2.3.5 Coding / release of the device:

As there is no release pin, the device is put into active mode by sending an amount of gas >0 nl/s through the CAN bus.

3. Commissioning:

3.1 Parameter setting:

The device requires no settings itself. Some recipe entries in the dia.ne system may need to be changed, though.

3.1.1 Indicative values for the GAS PROPORTIONING VALVE/TECJET RECIPE:

The indicative values below are established using a type 4 engine running on natural gas. The parameters are indicative for a new Leanox controller with an oil temperature dependent starting procedure and a stationary operation lambda controller.

Identification	Default value	Unit
Characteristic limited by oil temperature minimum	30	°C
Characteristic limited by oil temperature maximum	70	С°С
Volumetric efficiency	0.85	
Oil temperature point 1	30	°C
Lambda point 1	1.4	
Oil temperature point 2	70	°C
Lambda point 2	1.4	
Lambda offset for mains parallel operation	0.3	
Lambda offset for isolated operation	0.3	
Calorific value	9.971	kWh/Nm ³
Minimum air requirement	9.54	1/1

Standard gas density	720	g/m ³
Delay after startup	4	S
Delay after mains parallel or isolated operation	10	S
P part	-3	
l part	-20 (as of RPS 7.31 +20)	
Throttle valve setpoint position	4	%
Lambda control range	0.1	

These settings are input according to the number and nature of the different gas types. The lambda setting range runs from 1 to 2.5.

Value = 1 means very rich Value = 2 means very lean

The volumetric efficiency parameter represents the volumetric engine efficiency according to the relevant engine configuration (values to be influenced are of a mechanical nature, e.g. camshaft type). A typical value for type 4 engines with non-Miller camshafts would be 0.85 and 0.73 for engines with Miller camshafts. These values must, however, be determined on a case-by-case basis; the correct standard values are preset.

The lambda point 1 and 2 set values correspond to the mixture lambda values at the relevant points on the oil temperature dependent start-up characteristic.

When switching over from stationary operation to mains parallel or isolated operation, the lambda offset mains parallel and isolated operation parameters are added to the fuel mixture lambda value.

The calorific value corresponds to the energy content of one cubic metre of fuel gas under standard conditions (to be calculated using the software).

The minimum air requirement corresponds to the air quantity that must be added per fuel gas quantity in order to obtain stoichiometric combustion (Lambda=1) (to be calculated using the software).

Before commissioning (at least in the case of special gas fueled installations), a recent gas analysis must be available and/or the CH4 content must be determined using a gas analysis device. Ideally, also other components such as CO2, O2 and N2 could be established. We would recommend, however, that you calibrate such devices on a weekly basis or have this done.

If the gas analysis is carried out online and is used to determine the gas type interpolation, the following items must receive special attention: the detection time (ideally less than one second), the position of the measurement location in view of the flow times in the piping system (ideally just ahead of TecJet), the reaction time of the analysis devices (ideally in seconds), and the measurement results themselves (verification using a reference measurement device).

The parameters must be set as follows (the tables are indicative only). You can use the software installed on the service laptop for accurate calculations in the case of complex gas compositions: You can find the programme at <u>https://information.jenbacher.com</u> : " Produkte+Service --> Service Datenbank --> Service Bulletins".

put values					Calculated values	
Name of the gas					air / fuel ratio	[17]
					density	[a / Nm²]
CH4	% vol.	C2H2		% vol.	a daviša u akus	(L) (h / N=3)
246	% vol.	C2H4				[KWH7 NIII]
сзна [% vol.	H2		% vol.		
SO-C4H10	% vol.	CO		% vol.		
N-C4H10	% vol.	C02		% vol.		1
C5H12	% vol.	N2		% vol.	\$	
C6H14	% vol.	02		% vol.		
C7H16	% vol.	H20	[% vol.		
	Sum of elements:		% vol.		4	
1	to be completed to	100.%)			12	

• Calorific value: Reduce this parameter in accordance with the CH4 content if the remaining volume parts are complemented using ambient air only (e.g. mine gas application).

CH4 content [%]	Calorific value [kWh/Nm [°]]
100	9.9
50	4.95
30	2.97

Otherwise, the following guide values apply:

Gas	Calorific [kWh/Nm ³]	value
Natural gas, dry	9.8 – 11.7	
Landfill gas	6 – 5	
Landfill gas, drawn in	3 – 5	
Mine gas, active	3 – 5	
Mine gas, passive	5.5 – 7.7	
Biogas	4 - 6	

• Standard gas density:

Gas	Density [g/m³]
Natural gas, dry	720 - 860
Landfill gas	1220 – 1350
Landfill gas, drawn in	1200 - 1280
Mine gas, active	1000 - 1180
Mine gas, passive	880 – 950
Biogas	1200 - 1500

• Minimum air requirement: Describes the air volume required for λ =1 combustion and can be set in accordance with the CH4 content if the remaining volume parts are complemented using ambient air only (e.g. mine gas application).

Indicative values:

CH4 content [%]	Air requirement [I/I]
100	9.54
50	4.77
30	2.86

Otherwise, the following guide values apply:

Gas	Air requirement [g/m ³]
Natural gas, dry	9.5 – 11.1
Landfill gas	4.8 - 5.7
Landfill gas, drawn in	2.5 - 4.5
Mine gas, active	2.1 – 4.2
Mine gas, passive	5.7 – 7.6
Biogas	3.8 – 5.3

3.1.2 LEANOX recipe:

Settings as usual. Because the gas proportioning valve reacts faster than the gas mixer in the case of incorrect settings, we advise against manually adjusting the Leanox characteristic parameters (without making a Leanox calculation using dia.ne).

3.1.3 ENGINE DATA recipe:

This recipe is used to switch free the TecJet gas proportioning valve for the visualisation unit and to set the number of gas proportioning valves (important for mixed gas applications).

3.2 Dia.ne visualisation screens:

3.2.1 LEANOX:

The device is manually operated by entering the fuel mixture lambda value indicated as LAMBDA in the dia.ne visualisation system.

If the air requirement and gas density are correctly set, the following applies:

TECJET - value in the range [1.0 ... 1.3] Mixture very rich

TECJET – value in the range [1.3 ... 1.8] Mixture lean

TECJET – value in the range [1.8 ... 2.0] Mixture very lean

Manual adjustments must take place in 0.05 increments maximum.

3.2.2 DETAILS - GAS:

Measurement values indicated include gas pressure, gas temperature, differential gas pressure across the device and throttle valve position. These data are only available using dia.ne XT/WIN.

3.2.3 SYSTEM:

Apart from the known version numbers, the system screen shows the gas proportioning valve programme version (2.02 or higher required).

4. Troubleshooting:

4.1 Failure messages:

4.1.1 Tripping:

Message text and number	Error	Solution
TJ CAN KOPPLUNG DEFEKT	CAN messages could not be sent.	Check the CAN bus connection.
TJ CAN COUPLING FAILURE		The CAN bus connection must not
3093 – Priority 1		be interrupted. Check CAN bus
As of DIANE XT 2.10 the		terminators and wiring.
additional operational message		See CAN bus 1531-0012
3241 is displayed indicating the		Technical Instruction
device concerned.		
TJ FALSCHE SOFTWARE	TJ software version not dia.ne	Install device using correct
TJ WRONG SOFTWARE	compatible and/or not up-to-date.	software and/or have
3094 – Priority 3		GE Jenbacher mechanic install
As of DIANE XT 2.10 the		correct software
additional operational message		(version > 2.02).
3242 is displayed indicating the		
device concerned.		
TJ GASTEMPERATUR NICHT	Gas temperature too high or too	Check the gas temperature.
ERFUELLT	low; normally, the temperature	
TJ FUEL GAS TEMPERATURE	must be in the -40 to 80 °C range.	
OUT OF LIMITS		
3095 – Priority 1		
As of DIANE XT 2.10 the		
additional operational message		
3243 is displayed indicating the		
device concerned.		
TJ GASVORDRUCK NICHT	Gas temperature or differential	Check the prepressure controller
ERFUELLT	pressure too high or too low;	settings; check the pipe system
TJ FUEL GAS PRESSURE OUT	normally, the prepressure must be	for frozen condensate.
OF LIMITS	in the 500 to 1600 mbar _{abs} range.	
3096 – Priority 1	The differential pressure across	
As of DIANE XT 2.10 the	the device must be between 10	
additional operational message	and 500 mbar.	
3244 is displayed indicating the		
device concerned.		
TJ INTERNER FEHLER	Defective integrated electronics.	Check the voltage supply and the
TJ INTERNAL FAILURE	-	wiring. Replace the device if the
3097 – Priority 1		failure message cannot be reset.
As of DIANE XT 2.10 the		-
additional operational message		
3245 is displayed indicating the		
device concerned.		
TJ MECHANISCHE	Mechanical damage, valve stuck,	Visually check for damages.
FEHLFUNKTION	broken shaft.	
TJ MECHANICAL MALFUNCTION		
3098 – Priority 1		

4.1.2 Warning:

Message text and number	Error	Solution
GASMENGE OBERGRENZE FUEL GAS AMOUNT TOO HIGH 3212 As of DIANE XT 2.10 the additional operational message 3248 is displayed indicating the device concerned.	Calorific value drop towards the ,insufficient' range, charge pressure increase, overspeed.	Check the limiting fuel gas conditions, check the gas/calorific value, check the limiting engine conditions.
TJ GASMENGE NICHT ERREICHT TJ FUEL GAS AMOUNT NOT REACHED 3213 As of DIANE XT 2.10 the additional operational message 3249 is displayed indicating the device concerned.	Prepressure too low, solenoid valves are not opening.	Check and/or adjust the prepressure controller, check whether the solenoid valves work properly.

4.2 Troubleshooting:

4.2.1 Power supply problems (voltage supply, CAN bus):

Symptoms	Error	Solution
No TecJet data present on visualisation unit.	No voltage supply	Check the 24 V voltage supply in the interface cabinet for a blown fuse. Otherwise, check the TecJet connection plug.
No TecJet data present on visualisation unit, CAN error messages.	CAN bus wiring not OK, incorrect node number.	Check signal circuit at CAN bus (terminators 120 Ω , forward resistance CAN-Low -> CAN- High). Connect the TecJet to the CAN bus before the ignition. If the remaining devices at the CAN bus are OK, check the connecting plug at the TecJet.

4.3 Mechanical problems (gas quality and pressure):

Symptoms	Error	Solution
Unstable engine running	Condensate in sensor	Disassemble TecJet, open gas
behaviour, excessive richness,	compensation line (possibly	flow system and dry using hot air.
excessive gas moisture (>80 %).	frozen).	
Unstable engine running,	Excessive gas prepressure	Check the prepressure controller,
insufficient gas pressure.	fluctuations or gas prepressure	check the gas pressure control
	too high/low.	system for pressure loss.
Unstable engine running, ,Lox	Significant gas quality	Check on gas supply, current gas
Limit' engine tripping.	fluctuations.	analysis and volume of gas actually supplied.

4.4 Electronic problems (internal errors):

Symptoms	Error	Solution
Internal device error.	Defective electronics.	Replace device.

